How flexible is α-actinin’s rod domain?

نویسندگان

  • Muhammad H. Zaman
  • Mohammad R. Kaazempur-Mofrad
چکیده

keyword: α-actinin rod domain, α-spectrin, Steered Molecular Dynamics. Abstract: α−actinin, an actin binding protein, plays a key role in cell migration, cross-links actin filaments in the Z-disk, and is a major component of contractile muscle apparatus. The flexibility of the molecule is critical to its function. The flexibility of various regions of the molecule, including the linker connecting central subunits is studied using constant force steered molecular dynamics simulations. The linker, whose structure has been a subject of debate, is predicted to be semi-flexible. The flexibility of the linker is compared to all possible segments of equal length throughout the molecule. The stretching profile of the molecule at different forces suggests that loops and regions adjacent to the loops are much more rigid than the helices in the protein. Amino acid composition analysis of most flexible and most rigid regions of the molecule reveals that the rigid regions are rich in Ser, Val and Ile whereas the flexible regions are rich in Ala, Leu and Glu.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limited digestion of α-actinin in the presence of F-actin

N-terminal actin-binding domain of α-actinin is connected to central rod domain through flexible neck region that is susceptible to proteolysis. It is suggested that the neck region assumes variable orientations by actin binding. In order to examine the effect of actin binding to α-actinin, we carried out limited digestion of α-actinin by chymotrypsin in the presence and absence of F-actin. Alt...

متن کامل

Molecular Mechanics of the α-Actinin Rod Domain: Bending, Torsional, and Extensional Behavior

alpha-Actinin is an actin crosslinking molecule that can serve as a scaffold and maintain dynamic actin filament networks. As a crosslinker in the stressed cytoskeleton, alpha-actinin can retain conformation, function, and strength. alpha-Actinin has an actin binding domain and a calmodulin homology domain separated by a long rod domain. Using molecular dynamics and normal mode analysis, we sug...

متن کامل

Characterisation of Schizosaccharomyces pombe α-actinin

The actin cytoskeleton plays a fundamental role in eukaryotic cells. Its reorganization is regulated by a plethora of actin-modulating proteins, such as a-actinin. In higher organisms, α-actinin is characterized by the presence of three distinct structural domains: an N-terminal actin-binding domain and a C-terminal region with EF-hand motif separated by a central rod domain with four spectrin ...

متن کامل

Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.

Together with actin filaments and microtubules, intermediate filaments (IFs) are the basic cytoskeletal components of metazoan cells. Over 80 human diseases have been linked to mutations in various IF proteins to date. However, the filament structure is far from being resolved at the atomic level, which hampers rational understanding of IF pathologies. The elementary building block of all IF pr...

متن کامل

‘Naked’ and Hydrated Conformers of the Conserved Core Pentasaccharide of N-linked Glycoproteins and Its Building Blocks

N-glycosylation of eukaryotic proteins is widespread and vital to survival. The pentasaccharide unit -Man3GlcNAc2- lies at the protein-junction core of all oligosaccharides attached to asparagine side chains during this process. Although its absolute conservation implies an indispensable role, associated perhaps with its structure, its unbiased conformation and the potential modulating role of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004